

ボーリング ツールス
(Boring Tools)

インデックス(目次)

1.	ピット	
	[1-1] メタルクラウン ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 1
	[1-2] ウイングクラウン ・・・・・・・・・・・・・・	P 2
	[1-3] ロッドクラウン ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 2
	[1-4] ダイヤモンドワールドビット・・・・・・・・	P 3
	[1-5] クロスビット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 4
	[1-6] Y型ビット ·············	P 4
	[1-7] ロックビット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 4
2.	ボーリングロッド	
	[2-1] ボーリングロッド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 5
	[2-2] 摩擦圧接ロッド (FW-40.5) · · · · · · · · ·	P 5
	[2-3] ボーリングロッドリング巻 ・・・・・・・・	P 5
	[2-4] ボーリングロッドカップリング ・・・・・・・	P 6
	[2-5] ロッドレジューサ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 6
	[2-6] ウイングカップリング ・・・・・・・・・・	P 6
3.	シングルチューブコアバーレル	
	[3-1] コアチューブ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 7
	[3-2] コアチューブカップリング ・・・・・・・・	P 8
	[3-3] コアチューブカップリング(チップ付) ・・・・	P 8
	[3-4] プロロングカップリング ・・・・・・・・・	P 8
	[3-5] コアシェルコンプリート ・・・・・・・・・	P 9
	[3-6] セジメントチューブ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 9
	[3-7] セジメントチューブカップリング ・・・・・・	P 9

[3-8] ダブル用セジメントカップリング ・・・・・・	P 9
[3-9] ピンレスカップリング (PLC-64) ·····	P10
[3-10] 落としバー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P10
[3-11] 落としカップリング ・・・・・・・・・・	P10
[4]ダブルチューブコアバーレル	
[4-1](株)コアーパック ・・・・・・・・・・	P11
[4-2](株)アイジイ工業 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P11
[5]ケーシング用具	
[5-1] 強力型ケーシングチューブ ・・・・・・・・	P12
[5-2] ガス管ケーシングチューブ ・・・・・・・・	P12
[5-3] スケジュール管ケーシングチューブ ・・・・・	P12
[5-4] ケーシングクラウン ・・・・・・・・・・・	P13
[5-5] ケーシングシュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P13
[5-6] ケーシングスイベル ・・・・・・・・・・・	P13
[5-7] 硬質塩化ビニール管 ・・・・・・・・・・・	P13
[6]貫入試験器具	
[6-1] スプリットバーレルサンプラーSBS-JIS4 ・・・	P14
[6-2] 二重管スプリットバーレルサンプラー・・・・・	P14
[6-3] バスケットシュー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P15
[6-4] ノッキングブロック・カップリング ・・・・・	P15
[6-5] 動的貫入試験用コーン ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P15
[6-6] 半自動落下装置 (AH-1B) ······	P16
[6-7] ガイドロッド (SWT) ・・・・・・・・・	P17
[6-8] 安芯棒 · · · · · · · · · · · · · · · · · · ·	P18

	[6-9] ドライブハンマ(モンケン) ・・・・・・・・	P18
	[6-10] ドライブハンマハンガー(とんび) ・・・・・	P18
	[6-11] ペネ落とし(F-75) ········	P19
[7]	サンプラー	
	[7-1] 固定ピストン式シンウォールサンプラー(TS-5)・・	P 20
	[7-2] シンウォールライナ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 20
	[7-3] ベビーロッド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 21
	[7-4] ボルト付カップリング ・・・・・・・・・・	P 21
	[7-5] 水圧式サンプラー (WSP-90) ······	P 21
	[7-6] トリプルチューブサンプラー(TTS-99T) ····	P 22
	[7-7] ドライブサンプラー ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 22
	[7-8] デニソンサンプラー (DS-94EX) · · · · · · ·	P 23
[8]	ウォータースイベル・保持器具	
	[8-1] ウォータースイベル (WS-8) · · · · · · · · ·	P 24
	[8-2] ウォータースイベル (WSL-40A) ·····	P 25
	[8-3] ケーシングバンド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 26
	[8-4] ロッドバンド ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 26
	[8-5] ロッドホルダ・カムシー(KAMSY-B) · · · · ·	P 27
	[8-6] カムアロング(ロッドトング) ・・・・・・・	P 28
	[8-7] ロープトング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 28
	[8-8] ロアリングアイアン(アイアントング) ・・・・	P 28
[9]	事故回復用具・昇降器具	
	[9-1] 段付インサイドタップ ・・・・・・・・・・	P 29

[9-2] ロッドインサイドタップ · · · · · · · · P29

[9-3] コアチューブタップ ・・・・・・・・・・	P 29
[9-4] ロッドアウトサイドタップ ・・・・・・・・	P 29
[9-5] ホイスティングプラグ(HOP-1.5) · · · · ·	P 29
[10]ホース・金具	
[10-1] ホース ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P30
[10-2] フードバルブ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 30
[10-3] フクロナット・ノズル(竹の子) ・・・・・	P 30
[10-4] インターロックバンド ・・・・・・・・	P 30
[10-5] 泥水籠 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P30
[11]工具	
[11-1] パイプレンチ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P 31
[11-2] チェーントング ・・・・・・・・・・・	P 31
[11-3] フリーアームレンチ・パーマレンチ・・・・・	P 31
[12]土壌汚染調査関連ツールス	
[12-1] ボーリングバー ・・・・・・・・・・・	P 32
[12-2] 土壌ガス採取器 ・・・・・・・・・・	P 32
[12-3] 土壌ガス採取孔保護管 ・・・・・・・・	P 33
[12-4] 土壌汚染調査用ビット・・・・・・・・	P 33

技術資料

1-1 メタルクラウン

コアチューブ先端に取付け、主にコアボーリングに使用します。

呼称	植付外径	植付内径	標準	角形メタルチップ	標準ス	ーパーメタルチップ	」 備 考
	IE I J / I I I	115111111	植付数	チップサイズ	植付数	チップサイズ	- U
4 6	4 6	3 0	6	$5 \times 5 \times 7$	6	5 × 5 × 7	受注生産
5 6	5 6	4 0	6	5 × 5 × 7	6	5 × 5 × 7 7 × 7 × 7	
6 6	6 6	5 0	6	5 × 5 × 7	8	5 × 5 × 7 7 × 7 × 7	
7 6	7 6	6 0	8	5 × 5 × 7	8	5 × 5 × 7 7 × 7 × 7	標準品
8 6	8 6	7 0	8	5 × 5 × 7	10	5 × 5 × 7 7 × 7 × 7	
1 0 1	1 0 1	8 5	1 0	5 × 5 × 7	12	5 × 5 × 7 7 × 7 × 7	
116	116	9 7	10	6 × 6 × 7	10	7 × 7 × 7	
1 2 9 1 4 2 1 5 4 1 6 7	1 2 9 1 4 2 1 5 4 1 6 7	1 0 7 1 2 0 1 3 3 1 4 5	8 10 10 12	7 × 7 × 7	10 12 12 14	7 × 7 × 7	準標準品
1 9 3 2 1 8 2 4 4 2 6 9 3 2 0 3 5 8	1 9 3 2 1 8 2 4 4 2 6 9 3 2 0 3 5 8	171 196 220 245 296 331	1 4 1 4 1 6 1 8 2 0 2 2	7 × 7 × 7	1 6 1 6 1 8 2 0 2 2 2 4	7 × 7 × 7	受注生産

メタルクラウン旧JIS規格(メタルクラウンのJIS規格は2002年2月に廃止になりました。)

平 称	植付外径	植付内径	標準	角形メタルチップ	標準ス	ーパーメタルチップ	備考	
H 丁 孙小	他がかり			i=:::::=		植付数	チップサイズ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
46~86はね	じ以外は扶桑規	 格と同じ。			•			
1 0 1	101	8 4	1 0	5 × 5 × 7	1 0] 人 北 ノ ボ	
1 1 6	116	9 9	1 0	6 × 6 × 7	1 0	$7 \times 7 \times 7$	全サイズ 受注生産	
1 3 1	1 3 1	1 1 4	1 0	$7 \times 7 \times 7$	1 0	/	文注土性	
1 4 6	1 4 6	129	1 2	7×7×7	1 2			

ねじは扶桑規格と旧JIS規格があり、寸法が異なります。旧JIS規格の場合はご指示ください。

チップ材質を表す刻印 例 KG2を表す

メタルチップ材質と硬さ, 耐衝撃性

チップ材質	刻印記号	硬さ	耐衝擊性
KG05	0 5	硬	弱
KG1	1		
KG2	2		
LG3	3	軟	強

メタルチップ寸法表

(単位mm)

チップサイズ (a×b×c)	角形	スーパー (八角形)
$5 \times 5 \times 7$	0	0
6 × 6 × 7	0	0
7 × 7 × 7	0	0

1-2 ウイングメタルクラウン

軟弱地層または粘土層等で孔壁とコアチューブ隙間を多くしてスライム (切粉)の排出をよくする場合に使用します。 (単位mm)

呼称	56×66	66×76	76×86	86×96	86×101
外 径	66	76	86	96	101
内 径	40	50	60	70	70
羽根数	3	3	4	4	4
商品コード	T2005-	T2005	T2005	T2005	T2005
印口口一	05313	-13313	-22413	-32413	-33413

※上記商品コードのチップは、KG2です。

ネジは、扶桑規格とJIS規格があり、寸法が異なります。JIS規格の場合は その旨を御指示下さい。

1-3 ロッドクラウン

ボーリングロッドに接続してグラウト孔、発破孔等の掘削 に使用します。(受注生産品)

(畄	欱	m	m)

			· · · —
呼 称	シャンク外径	肉厚	チップ形状
40. 5	φ 42	8	角型チップ,スーパーチップ
42C	φ 42	8	スーハ゜ーチッフ゜

チップ材質各種あります。植付個数は、4ヶ植,6ヶ植があります。 42 Cは、スーパー6ヶ植のみです。

※一文字クラウン、コンポジットクラウン等のご注文も承ります。

☆一文字クラウン

軟弱地層や軟岩などでサンプルやコアーを必要としない ボーリングに使用します。メタルクラウンの内側に一枚 のブレードが付いたもの。同様にクロスにブレードがつ いたものを十文字クラウンと呼びます。

☆コンポジットクラウン

メタルクラウンの先端に砕いたメタルチップを盛りつけたも ので、砂礫層や鉄筋入りコンクリートなどの掘削ダメージの 大きなところに使用します。

メタルクラウン選択仕様表

	土質			軟岩				中硬岩										
硬さ	土質記号	粘土	シルト	砂質土	礫質土	軟質頁岩	泥岩	凝灰岩	粘板岩	石灰岩	砂岩	砂質頁岩	砂質石灰岩	軟質片岩	硬質石灰岩	れき岩	中硬質頁岩	軟質片岩
硬	KG05																	
1	KG1																	
ー チップ ■ ■	KG2																	
軟	KG3																	

1-4 ダイヤモンドワールドビット

使用目的にはシングルコアチューブ用とダブルコアチューブ用があります。

軟岩から超硬岩の掘削に用います。

表面にはダイヤモンド粒を鋳こんだサーフェース ビットとダイヤモンドの粉末を金属粉末と混合し て焼結したインプリグネイテッドビットがあり、 地層によって使い分けます。

ダイヤモンドリーマ

ダイヤモンドビットに接続して使用するリーマで、ビットで掘削すると同時に側面掘削を並行して行い、常に孔径を一定に維持するために使用します。※ダイヤモンドリーミングシェルとも呼ばれています。

■各種ビット規格(インプリグネイテッドビット)

(単位mm)

名 称	サイズ	セット外径	セット内径	名 称	サイズ	セット外径	セット内径
	D S 66	66	50		C 85-70	85	70
ダブル	D S 76	76	60		C86-68	86	68
タフル	D S 86	86	70	, , , , ,	C86-70	86	70
	D S116	116	95	ケーシング	C91-77	91	77
	S 56	56	40		C103-90	103	90
シングル	S 66	66	50		C116-100	116	100
	S 86	86	70	¬	N R 66	66. 5	
	S116	116	94	リーマ	N R86	86. 5	

■ダイヤモンドインプリビットマトリックス選択表

岩質		軟岩		中硬岩					7	硬岩	1				超硬岩										
岩石名	粘土	頁岩	泥岩	凝灰岩	石灰岩	粘板岩	砂岩	砂質頁岩	礫岩	斑岩ひん岩	硬質頁岩	片麻岩	蛇紋岩	花崗閃緑岩	かんらん岩	安山岩	揮緑岩	花崗岩	玄武岩	流紋岩	斑れい岩	珪岩	石英斑岩	石英岩	チャート
マトリックス		•	柯	更																		車	欠		
																	14HR, 15HR								
マトリックス										11HR, 12			, 12	2HR, 13HR											
表示番号												81	IR, S	9HR,	10	HR									
				6	SHR,	7HF	?																		

※本ページの商品は、受注生産品です。

1-5 クロスビット

粘土層,砂岩,軟岩等の削孔に使用するビット。 上下二段(4枚羽根)に切削面を持ち、先端部刃先には、超硬チップが植え付けてあり、特に粘土は詰りが無く水通りが良く掘進できます。

◇扶桑規格

呼称	66	76	86	101	115	
質量(kg)	1. 8	2. 1	2. 3	2. 8	3	
ロット゛ネシ゛		40. 5	40. 5			
商品コード	T2305	T2305	T2305	T2305	T2305	
	-06540	-07540	-08540	-10140	-11540	

※40.5以外のロッドネジも製作いたします。

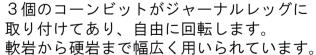
1-6 Y型ビット

削孔用のビットで羽根は、3枚。 クロスビットと同じように先端部刃先には 超硬チップが植え付けてあります。 羽根の側面に超硬チップを植え付けたAタイプ (強力型)もあります。

◇扶桑規格

呼 称	66	76	86	101	
質量(kg)	1. 5	2. 2	2. 3	3. 2	
ロット゛ネシ゛		40. 5			
一 中っし、	T2303	T2303	T2303	T2303	
商品コード	-06540	-07540	-08540	-10140	

◇扶桑規格(Aタイプ)


呼称	66	76	86		
質量(kg)	1. 9	2. 1	2. 3		
ロット゛ネシ゛	40. 5				
* • • • • • • • • • • • • • • • • • • •	T2304	T2304	T2304		
商品」「	-06640	-07640	-08640		

1-7 ロックビット(取扱商品)

(単位mm)

仕	様	│ API規格 │		
インチ	mm	ネジ寸法		
3-7/8	98. 4	2-3/8REG		
4-1/2	114. 3	2-3/ OKEU		
4-3/4	120. 6	2-7/8REG		
5-5/8	142. 9			
5-7/8	149. 2	3-1/2REG		
6-1/4	158. 7			
7-5/8	193. 7	4-1/2REG		
8-1/2	215. 9	4-1/2KEG		
9-5/8	244. 5			
10-5/8	269. 9	6-5/8REG		
12-1/4	311. 2			
14-3/4	374. 7	7-5/8REG		
17-1/2	444. 5	/-5/ OKEG		

※左記以外のサイズについても承ります。

2-1 ボーリングロッド (カップリング接続タイプ)

回転および推力をビットに伝え流体を刃先に供給する鋼管です。

◇扶桑規格

呼 称	外径(mm)	内径(mm)	カップリング内径(mm)
40. 5	φ 40. 5	φ31	φ18

☆住友製

長さ(m)	0. 3	0. 5	1. 0	1. 5	2. 0	3. 0
質量(kg)	1. 8	2. 6	4. 7	6. 8	8. 9	13. 1
去口っし	T0122	T0122	T0122	T0122	T0122	T0122
商品コード	-04009	-04001	-04002	-04003	-04004	-04005

☆山和製

長 さ(m)	0. 5	1. 0	1. 5	2. 0	3. 0
質 量(kg)	2. 6	4. 7	6. 8	8. 9	13. 1
商品コード	T0125	T0125	T0125	T0125	T0125
	-04001	-04002	-04003	-04004	-04005

2-2 摩擦圧接ロッド (FW40.5)

 ϕ 40. 5の管体の両端にオス、メスのジョイントを摩擦圧接したボーリングロッドです。

◇扶桑規格

呼 称	外径(mm)	オス内径(mm)	メス内径(mm)
FW40. 5	φ 40. 5	φ20	φ23

長 さ(m)	0. 5	1. 0	1. 5	2. 0	3. 0
質 量(kg)	2. 6	4. 7	6. 8	8. 9	13. 1
☆ □ ¬	T0145	T0145	T0145	T0145	T0145
商品コード	-04011	-04012	-04013	-04014	-04015

2-3 ボーリングロッドリング巻(40.5)

標準貫入試験用のボーリングロッドです。 ドライブハンマの打撃による衝撃に対し特に適しています。

◇扶桑規格

呼称	リンク 外径 (mm)	リンク゛長サ (mm)
40. 5	φ53. 5	54

長さ(m)	0. 3	0. 5	1. 0	1. 5	2. 0	3. 0
質量(kg)	1. 5	2. 3	4. 4	6. 5	8. 6	12. 8
ᅕᄆᄀᆝ゙	W1203	W1203	W1203	W1203	W1203	W1203
商品コード	-0131A	-0134Z	-0135Z	-0136Z	-0137Z	-0138Z

2-4 ボーリングロッドカップリング

ロッドとロッドの接続に使用します。

呼称	40. 5	45	50
外径(mm)	φ 40. 5	φ 45	ϕ 50
有効長(mm)	50	50	60
質 量(kg)	0. 75	0. 85	1. 45
± □ ¬	T0201	T0201	T0201
商品コード	-04003	-04501	-05001

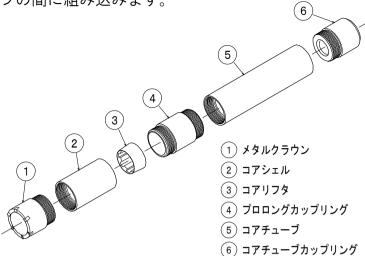
※上記以外のロッドネジも製作いたします。

2-5 ロッドレジューサ

ボーリングロッドやビット等のネジサイズが異なるものを接続する時に用いる継手です。

接続ネジ	オス (P)	40. 5	50
按称が	メス (B)	50	40. 5
外名	圣(mm)	ϕ 50	ϕ 50
有効長	長(mm)	90	70
質	量(kg)	0. 9	1. 1
商品	٦ _ ل *	T2601	T2601
	1 - L	-02041	-04021

※40.5,50以外のロッドネジも製作いたします。


2-6 ウイングカップリング

ダブルコアチューブの真上に接続し、引揚時リーマの役目をし、 ダブルコアチューブヘッドの摩耗防止を目的とします。

呼称	66	76	86
外径(mm)	ϕ 66	φ76	φ86
長さ(mm)		110	
接続ネジ		40. 5	
質量(kg)	0. 9	1. 0	1. 1
商品コード	T2507 -40066	T2507 -40076	T2507 -40086
	+0000	+0070	+0000

コアを採取する器具で、ビット、コアチューブ、コアチューブカップリングを組み合わせたもの。必要に応じてコアシェルコンプリートをコアチューブの間に組み込みます。

3-1 コアチューブ

※青色商品コード欄は、標準在庫です。

コアを収納する鋼管は、JIS規格と扶桑規格があります。

☆ 標準長さ(m); 0.5 1.0 (受注生産) 0.3 1.5 2.0 3.0

◇扶桑規格·JIS規格 標準長さ:1.0m

呼 称	54	64	74	84	89	99	114
外径(mm)	φ54	φ64	φ74	φ84	φ89. 1	ϕ 99	φ114. 3
厚さ(mm)	4. 0	4. 0	4. 0	4. 0	4. 2	4. 0	4. 5
長さ(m)				1. 0			
質量(kg)	4. 9	5. 8	6. 9	7. 7	8. 8	9. 3	12. 2
辛口っし ゛	T0405	T0405	T0405	T0405	T0411	T0404	T0412
商品コード	-05402	-06402	-07402	-08402	-08902	-09902	-11402

呼称	127	140	152	165	64JIS	84JIS
外径(mm)	φ127	φ139. 8	φ152. 4	φ 165. 2	φ64	φ84
厚さ(mm)	4. 5	4. 5	5. 2	5. 0	4. 75	4. 75
長さ(mm)		1.	0		1.	0
質量(kg)	13. 6	15	18	19. 8	6. 9	9. 3
± □¬ l*	T0432	T0412	T0433	T0413	T0447	T0447
商品コード	-12702	-14002	-15202	-16502	-06402	-08402

◇扶桑規格 標準長さ: 0.5 m

呼称	54	64	74	84	89	99	114
外径(mm)	φ54	φ64	φ74	φ84	φ89. 1	φ99	φ114. 3
厚さ(mm)	4. 0	4. 0	4. 0	4. 0	4. 2	4. 0	4. 5
長さ(m)				0. 5			
質量(kg)	2. 5	2. 9	3. 5	3. 9	4. 4	4. 7	6. 1
商品コード	T0405	T0405	T0405	T0405	T0411	T0404	T0412
	-05401	-06401	-07401	-08401	-08901	-09901	-11401

呼 称	127	140	152	165
外径(mm)	φ127	φ139. 8	φ 152. 4	φ 165. 2
厚さ(mm)	4. 5	4. 5	5. 2	5. 0
長さ(mm)		0.	5	
質量(kg)	6. 8	7. 5	9	9. 9
ᅕᄆᄀᆝ	T0432	T0412	T0433	T0413
商品コード	-12701	-14001	-15201	-16501

3-2 コアチューブカップリング

コアチューブとボーリングロッドを接続する継手です。

◇扶桑規格·JIS規格

呼称	54	64	74	84	89	99	114
外径(mm)	φ54	φ64	φ74	φ84	ϕ 89	ϕ 99	φ114. 3
有効長(mm)	40	45	45	45	45	50	55
接続ネジ				40. 5			
質量(kg)	0. 7	1. 2	1. 7	2. 1	2. 6	3. 2	4. 6
± □¬ l`	T0501	T0501	T0501	T0507	T0501	T0507	T0507
商品コード	-05440	-06440	-07440	-08440	-08940	-09940	-11440

呼称	127	140	152	165	64JIS	84JIS
外径(mm)	φ127	φ 139. 8	φ 152. 4	φ165. 2	φ64	φ84
有効長(mm)	125	125	135	145	45	45
接続ネジ		40.	5		40	. 5
質量(kg)	4. 5	5. 0	6. 6	8. 2	1. 7	2. 2
商品コード	T0510	T0510	T0510	T0510	T0501	T0507
	-12740	-14040	-15240	-16540	-J6440	-J8440

- ※40.5以外のロッドネジも製作いたします。
- ※上記サイズ以外も製作いたします。

3-3 コアチューブカップリング (チップ付)

コアチューブカップリングの肩にメタルチップを植え付け、コアチューブ引揚げ時に回転させながら、 孔径が小さくなった部分をリーミングします。

◇扶桑規格

呼称	54	64	74	84	99	114
外径(mm)	ϕ 55	ϕ 65	φ75	ϕ 85	φ100	φ115
有効長(mm)	40	45	45	45	50	55
接続ネジ			40.	5		
質量(kg)	0. 7	1. 2	1. 7	2. 1	3. 2	4. 6
商品コード	T0503 -05440	T0503 -06440	T0503 -07440	T0503 -08440	T0503 -09940	T0503 -11440

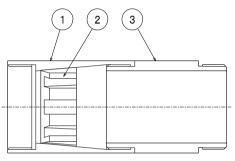
- ※40.5以外のロッドネジも製作いたします。
- ※上記サイズ以外も製作いたします。

3-4 プロロングカップリング

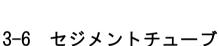
コアチューブを2本以上接続する場合の継手です。

◇扶桑規格

呼称	54	64	74	84	89	99	114
外径	φ54	φ64	φ74	φ84	ϕ 89	ϕ 99	φ114. 3
内径	φ 42	φ52	φ62	φ72	φ76	φ87	φ100
胴長	50	50	50	50	50	50	60
質量(kg)	0. 5	0. 6	0. 7	0. 9	0. 9	1. 0	1. 6
☆ □¬ l`	T0701	T0701	T0701	T0701	T0701	T0701	T0701
商品コード	-05450	-06450	-07450	-08450	-08950	-09950	-11460


※上記サイズ以外も製作いたします。

3-5 コアシェルコンプリート


コアチューブとメタルクラウンとの間に接続しコアを保持する器具。コアシェル,プロロングカップリング、コアリフタの3点を一組にして組立てたものです。

◇扶桑規格

呼称		64	84	
質 量(kg)		1. 1	1. 6	
	コアシェルコンフ゜リート	T0601-06400	T0601-08400	
商品コード	② コアリフタ	T0601-06401	T0601-08401	
	(1) J79IN	T0601-06402	T0601-08402	

- ① コアシェル
- ② コアリフタ
- ③ プロロングカップリング

スライムを採取,収容する管で、コアチューブ上部のセジメント チューブカップリングと接続して使用します。 左ネジが切ってあります。

3-7 セジメントチューブカップリング

コアチューブとセジメントチューブを接続しさらにロッドを接続 する継手。セジメントチューブと接続部分は、左ネジが切ってあ ります。

◇扶桑規格

呼称	64	74	84	99	114		
ロット゛ネシ゛		40. 5		40. 5		40	. 5
質量(kg)	1. 8	2. 6	3. 5	5	7. 7		
 	T1001	T1001	T1001	T1001	T1001		
商品コード	-06440	-07440	-08440	-09940	-11440		

※127,140,165サイズも製作いたします。

※40.5以外のロッドネジも製作いたします。

3-8 ダブル用セジメントカップリング

ダブルコアチューブにセジメントチューブを接続する継手です。

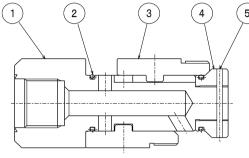
◇扶桑規格

呼 称	64	74	84		
ロット゛ネシ゛ 40. 5					
質量(kg)	1. 5	2. 1	2. 7		
± □ ¬	T1002	T1002	T1002		
商品コード	-06440	-07440	-08440		

3-9 ピンレスカップリング


掘削中は掘削水をコアチューブに送り、ボーリングロッドを引き上げる際、ロッド内の水をコアチューブの上部にて遮断してコア(採取試料)の脱落を防止するカップリングです。コアチューブカップリング兼用の器具です。また、レジューサ(PLC-64COM)を接続することにより、各サイズのコアチューブカップリングと接続が可能となります。

◇扶桑規格


<u> </u>	H		
呼 称	64	74	84
ロット゛ネシ゛	40. 5	40. 5	40. 5
質量(kg)	2. 7	3. 2	3. 8
* - ' '	T0803	T0803	T0803
商品コード	-06400	-07400	-08400

※JISサイズ (64,84) も製作いたします。

呼 称	商品コード	質量(kg)
PLC-64COM	T0803-06404	0. 78

- ①カップリング
- ②0リング
- ③コアチューブカップリング
- ④ナット
- ⑤スプリングピン

3-10 落としバー

サンプリングの時の試料落下防止に使用します。 (落としカップリングと組合せて使用)

呼称	商品コード	質量(kg)
1/2 "	T0811-11301	0. 35

※先端に焼きを入れた製品もあります。

商品コード: T0811-11302

3-11 落としカップリング

サンプリングの時の試料落下防止に使用します。 (落としバーと組合せて使用)

呼 称	商品コード	質量(kg)	
40. 5	T0811-24040	0. 5	

4-1 (株) コアーパック

S, NEWS, SLIM, トリプル, R, REX, 打込みタイプ他があります。

型式	地質	用途	特長	
S			軟硬兼用スタンダード	
NEWS	軟弱		2重管構造	
SLIM	軟質	軟硬兼用	S型よりコア径3mmUP	
	中硬岩	秋 秋 秋		
トリプル	破砕帯		3重管構造	
	超硬岩			
R	硬岩		硬岩用スタンダード	
REX	超硬岩	硬岩用	R型の改良モデル	
N L X	破砕帯		N至の以及 C 7 ル	
打込み	軟弱		打込み式コアーパックチューブ	
打込みPRO	軟質	打込み	打込みパック強化型	
分割クン	中硬岩		外管分割型	

4-2 (有) アイジイ工業

N, NSR, NS, NSGタイプ他があります。

型式	地質	サイズ	特長
N	超硬岩 硬岩 中硬岩 破砕帯	46-30 ~ 146-125	軟岩から超硬岩まで対応 ダイヤビット, リーマ使用 清水タイプ
NSR	軟弱層 軟岩 中硬岩 硬岩	66-48 ~ 146-123	一部パーツ交換でNシリーズ として使用可能 シュータイプ 清水タイプ
NSG	軟岩 土砂用 中硬岩	76–48 ~ 116–81	アクリル管使用の3重管構造 一部パーツ交換でVU管仕様 に変更可能 泥水タイプ
NS	軟岩	66-45 ~ 86-65	軟弱地層のコア採取用 一部パーツ交換で中硬岩用 に変更可能 泥水タイプ

※ケーシングチューブは、受注生産です。 但し、青色商品コード欄は、標準在庫です。

5-1 強力型ケーシングチューブ(HD型)

ケーシングチューブの引張り強さを向上させた強力タイプです。

◇扶桑規格

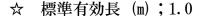
呼称	83	89. 1	101. 6	114
外径(mm)	φ83	φ89. 1	φ101. 6	φ114. 3
内径(mm)	φ72	φ 78. 1	φ90. 2	φ 102. 3
厚さ(mm)	5. 5	5. 5	5. 7	6
長さ(m)	1. 0	1. 0	1. 0	1. 0
質量(kg/m)	10. 6	11. 3	13. 5	16
商品コード	T1301	T1301	T1302	T1303
	-08321	-08921	-10221	-11421

☆ 上記製品は、右ネジとします。

5-2 ガス管ケーシングチューブ

アンカー工事,集排水孔ボーリング等に用いるガス管サイズ のケーシングチューブで、先端にはケーシングクラウンを取 り付けて掘削します。

呼称	3	3 1/2	4	4 1/2	5	6
外径(mm)	φ89. 1	φ101. 6	φ114. 3	φ127	φ139. 8	φ165. 2
内径(mm)	φ80. 7	φ93. 2	φ 105. 3	φ118	φ130. 8	φ155. 2
厚さ(mm)	4. 2	4. 2	4. 5	4. 5	4. 5	5
質量(kg/m)	8. 8	10. 1	12. 2	13. 6	15. 0	19. 8



5-3 スケジュール管ケーシング(肉厚)チューブ

外径がガス管サイズのケーシングチューブで肉厚タイプです。

呼称		3 3 1/2 4		3 1/2		1
スケシ゛ュール	Sch40	Sch60	Sch40	Sch60	Sch40	Sch60
外径(mm)	φ89. 1	ϕ 89. 1	ϕ 101. 6	φ101. 6	φ114. 3	φ114. 3
内径(mm)	φ 78. 1	φ75. 9	φ90. 2	φ87. 6	φ102. 3	φ100.1
厚さ(mm)	5. 5	6. 6	5. 7	7. 0	6. 0	7. 1
質量(kg/m)	11. 3	13. 4	13. 5	16. 3	16. 0	18. 8

呼称	5		(3
スケシ゛ュール	Sch40	Sch60	Sch40	Sch60
外径(mm)	φ139. 8	φ139. 8	φ 165. 2	φ 165. 2
内径(mm)	φ126. 6	ϕ 123. 6	φ151	φ 146. 6
厚さ(mm)	6. 6	8. 1	7. 1	9. 3
質量(kg/m)	21. 7	26. 3	27. 7	35. 8

5-4 ケーシングクラウン(ケーシングビット)

ケーシングチューブの先端に接続して掘削し、ケーシング チューブを所定の位置に設置するためのビットです。 外内径共メタルチップが出ています。

◇扶桑規格

呼称	3	3 1/2	4	5
外径(mm)	φ89. 1	φ101.6	φ114. 3	φ139. 8
厚さ(mm)	5. 5	5. 7	6. 0	6. 6
植付外径(mm)	90. 1	102. 6	115. 3	141
植付内径(mm)	78. 1	90. 2	102. 3	126. 6

※厚さ、植付個数(8,10,12)、チップサイズ($5\times5\times7$, $6\times6\times7$)は、ご相談により製作いたします。

※植付外内径についてもご相談により製作いたします。

※他のサイズについても製作致します。

5-5 ケーシングシュー(ドライブシュー)

ケーシングチューブを土中に打ち込む時、入り易くする先端器具。先端は、内テーパ加工焼入れ処理が施され、ケーシングチューブの最下端に接続して使用します。

5-6 ケーシングスイベル

ケーシングチューブの昇降およびボーリングロッドからの回転,推力を伝えるのに使用する継手です。

◇扶桑規格

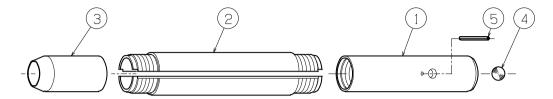
呼 称	83	85	89. 1	101. 6
接続ネジ		40	. 5	

※40.5以外のロッドネジも製作いたします。

※他のサイズについても製作いたします。

5-7 硬質塩化ビニール管

井戸,集排水用配管に使用します。 ネジ加工およびストレーナ加工を施します。 VP25~VP300まで各サイズに対応できます。



◇JIS規格(VP管)

呼称	25	30	40	50	65	75	100	125	150	200	250	300
外径(mm)	φ32	φ38	φ48	ϕ 60	φ76	ϕ 89	φ114	φ140	ϕ 165	φ216	ϕ 267	φ318
厚さ(mm)	3. 1	3. 1	3. 6	4. 1	4. 1	5. 5	6. 6	7	8. 9	10. 3	12. 7	15. 1

6-1 スプリットバーレルサンプラー(SBS-JIS4山KANO)

JIS規格の土の標準貫入試験に使用するサンプラーでシュー, 2つ割りにできるスプリットバーレルおよびコネクターヘッドで構成され、N値の測定と土の試料採取に用いる器具です。

5	スプリングピン		1	10906-11050
4	スチールボール		1	13002-10120
3	シュー		1	T2501-75143
2	スプリットバーレル		1	T2501-75142
1	コネクターヘッド		1	T2501-75141
符号	名 称	備考	個数	商品コード

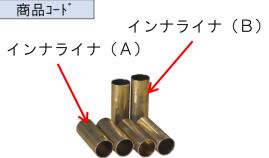
スプリットバーレルサンプラー				
型式	SBS-JIS4ЩKANO			
外 径 (mm)	φ51			
全 長 (mm)	810			
質 量 (kg)	7. 1			
商品コード	T2501-75140			

6-2 二重管スプリットバーレルサンプラー(SBS-3)

標準貫入試験に使用するサンプラーのスプリットバーレル内に インナライナを装着した二重管タイプです。

主に、湿潤密度試験用試料の採取用として使用します。

備考


個数

二重管スプリットバーレルサンプラー					
型式	SBS-3				
外 径 (mm)	φ51				
全 長 (mm)	810				
質 量 (kg)	7. 15				
商品コード	T2501-35180				

称

符号

名

6-3 バスケットシュー


先端シューにバスケットスプリングを装着し砂層など資料が脱落しやすい地層に使用します。

バスケットシュー					
型 式 SBS-JIS4山KAN0用 SBS-3用					
外 径 (mm)	φ51	φ51			
全 長 (mm)	75	75			
質 量 (kg)	0. 4	0. 4			
商品コード	T2501-75148	T2501-35188			

6-4 ノッキングブロック・ノッキングカップリング

標準貫入試験に使用するドライブハンマの打撃を受ける器具。 ボーリングロッドと接続して使用します。 ネジ式とテーパ式があります。

☆ネジ式

名称	ノッキングブロック	ノッキングカップリング
外径 (mm)	φ75	φ54
全長 (mm)	64	110
質量(kg)	1. 75	1. 35
商品コード	W1104-0077A	W1104-0078Z

☆テーパ式

名 称	ノッキングブロック	ノッキングカップリング
外径 (mm)	φ88	φ54
全長 (mm)	63	297
質量(kg)	2. 1	3. 0
商品コード	W1104-0076B	W1103-0332A

☆テーパ式(SWTネジ仕様)

名 称	商品コード	質量(kg)
ノッキングカップリング (A) (SWT)	W1103-0682A	2. 6
ノッキングカップリング(B)(SWT)	W1103-0688A	2. 3

※ノッキングカップリング(B)は、旧安芯棒用です。

※ノッキングブロックは、W1104-0076Bをご使用下さい。

6-5 動的貫入試験用コーン

ボーリングロッドの先端に取り付けてハンマの衝撃で打込んでいく動的 貫入試験器の先端器具です。先端部は、熱処理を施してあります。

動的貫入試験用コーン				
外 径 (mm)	φ51			
全 長 (mm)	124			
接続ネジ	40. 5			
質 量 (kg)	1. 1			
商品コード	T2504-51401			

6-6 半自動落下装置(AH-1B)

標準貫入試験用の打撃ハンマで、半自動で落下させる機構を装備している。基準落下高さ76cmで確実にフックが開き正確な打撃エネルギーが得られます。

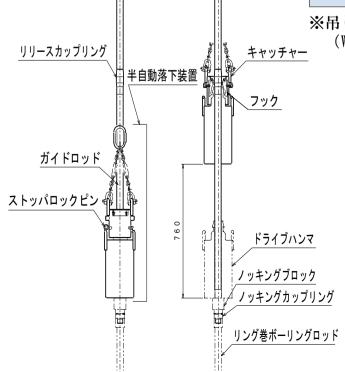
キャッチャーを逆打ち専用ヘッドに交換するだけで逆打ち 作業が行えます。

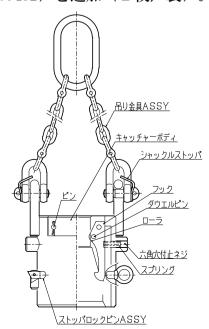
・質量測定検査証の発行も行っております。

半自動落下装置		
型 式 AH-1B		
予備打ち高さ	任意(巻き上げ操作による)	
本打ち高さ(cm)	76	
ドライブハンマ寸法(mm)	φ 178×434 L	

名 称	商品コード	質量(kg)
半自動落下装置	W0902-0017E	80. 0
キャッチャーASSY	W0902-0120A	14. 9
ドライブハンマ	W0903-0056C	63. 5
リリースカップリング(SWT)	W1103-0684A	1. 6
逆打ヘッド(オプション)	W0903-0228A	7. 8

- ※キャッチャー質量は、吊り金具も含む。
- ※半自動落下装置構成部品:キャッチャーASSY, ドライブハンマ,リリースカップリング


リリースカップリング(SWT)



半自動落下装置 模式図

キャッチャーASSY	
名 称	商品コード
キャッチャーボディ	W0902-0016A
フック	W0904-0038C
ローラ	W0904-0389Z
ダウエルピン	W0904-0390Z
ストッパロックピンASSY	W0904-0198Z
ピン	W0904-0040Z
スプリング	14804-01035
六角穴付止ネジ	10435-11212
吊り金具ASSY	30905-20422

※吊り金具ASSYにシャックルストッパ (W0904-0543Z) を追加(2枚/袋)。

16

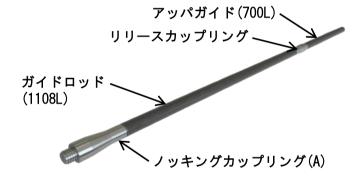
特許取得

※青色商品コート 欄は、標準在庫です。

6-7 ガイドロッド (SWT)

標準貫入試時のドライブハンマ用ガイドロッドです。半自動落下装置用と標準ドライブハンマ用があります。

☆半自動落下装置用


名 称	商品コード	質量(kg)
ガイドロッドASSY(A)(SWT)	W1103-0686Z	11. 6

ガイドロッドASSY(A)(SWT)		
名 称	商品コード	質量(kg)
ノッキングカップリング(A)(SWT)	W1103-0682A	2. 6
ガイドロッド(1108L)(SWT)	W1103-0683Z	4. 5
リリースカップリング(SWT)	W1103-0684A	1. 6
アッパガイド(700L)(SWT)	W1103-0685Z	2. 9

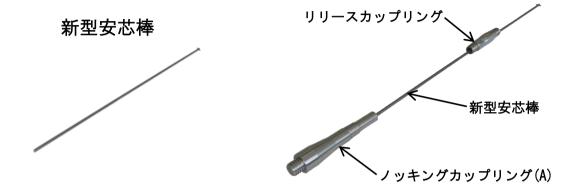
※ガイドロッドASSY (A) にノッキングブロックを合わせた ガイドロッドASSY (G) もあります。 ガイドロッドASSY (G): W1103-0803 Z

ノッキングブロック : W1104-0076B

▼ ノッキングブロック

☆標準ドライブハンマ用

名 称	商品コード	質量(kg)
ガイドロッドASSY(D)(SWT)	W1103-0695Z	8. 7


ガイドロッドASSY(D)(SWT)		
名 称	商品コード	質量(kg)
ノッキングカップリング(A)(SWT)	W1103-0682Z	2. 6
ガイドロッド(1450L)(SWT)	W1103-0697Z	6. 1

6-8 新型安芯棒

標準貫入試験中ガイドロッド、リリースカップリング等の接続部が破損しても安芯棒を装着することによりドライブハンマの急激な落下を防ぐことができます。

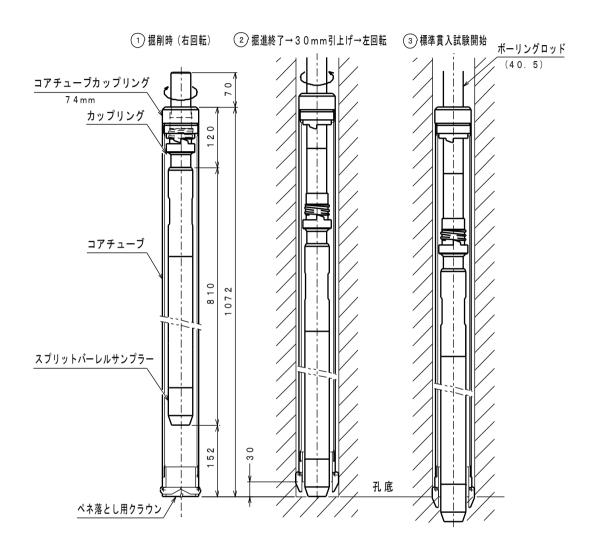
名 称	商品コード	質量(kg)
新型安芯棒	W1104-0419Z	0. 95

6-9 ドライブハンマ(モンケン)

標準貫入試験時やドライブパイプなどの打込み、逆打ち作業に使用します。

ドライブハンマ(モンケン)		
外 径 (mm)	φ178	
内 径 (mm)	φ43	
高 さ (mm)	344	
質 量 (kg)	63. 5	
商品コート	W1003-0122B	

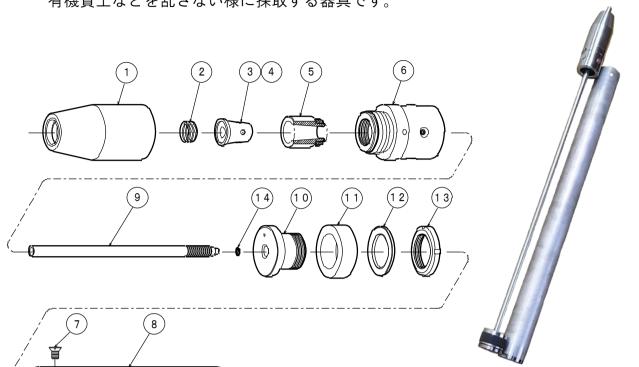
6-10 ドライブハンマハンガー(とんび)


標準貫入試験でドライブハンマを引っ掛けて自由落下させる ために使用します。

呼称	商品コード	質量(kg)
ドライブハンマハンガー(シャックル付)	W1303-0291A	1. 4

6-11 ペネ落とし

ツールスを昇降する事無く穿孔終了後、直に標準貫入試験が行えます。 コアチューブを原位置に止めて標準貫入試験が可能なので孔壁の崩壊を防ぐ ことができます。また、作業直前まで送水出来るのでスライム等沈殿物によ る障害を防ぎます。


☆ φ74用ペネ落とし

名 称	商品コード	質量(kg)
メタルクラウン(76 X 86)	T2502-20744	0. 8
コアチューブカップリング(F-75)	T2502-30742	1. 0
カップリング(F-75)	T2502-30741	1. 8

7-1 固定ピストン式シンウォールサンプラー (TS-5)

飽和状態にある軟弱な細粒土、すなわち $N=0\sim4$ 程度のシルト、粘土、有機質土などを乱さない様に採取する器具です。

固定ピストン式シン	ウォールサンプラー
型式	T S-5
^ E / \	1100

固定ピストン式シンウォールサンプラー					
型式	T S-5				
全 長 (mm)	1166				
コ ア 長 (mm)	887				
サンプラー外径(mm)	φ78				
採取コア径 (mm)	φ75				
質 量 (kg)	11. 5				
商品コード	T2403-07800				

14	0リング		1	14901-00800
13	ベアリングナット		1	10708-11010
12	カラー		1	T2403-07809
11	パッキン		1	T2403-07808
10	ピストン		1	T2403-07807
9	ピストンロッド		1	T2403-07806
8	シンウォールライナ		1	T2401-07804
7	サラネジ	$W3/8 \times 16$	4	10410-10616
6	カップリング		1	T2403-07805
5	テーパスリーブ		1	T2403-07804
4	スチールボール		4	13002-10045
3	テーパホルダ		1	T2403-07803
2	スプリング		1	T2403-07802
1	ヘッド		1	T2403-07801
符号	名 称	備考	個数	商品コード

7-2 シンウォールライナ

固定ピストン式、水圧式サンプラーなどのサンプリング チューブとして使用します。

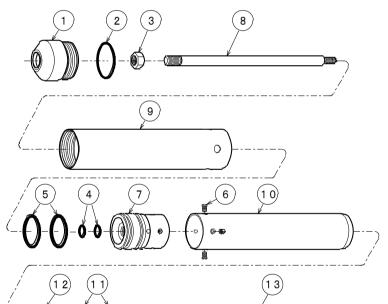
シンウォールライナ						
外 径 (mm)	φ78					
内 径 (mm)	φ75					
長 さ (mm)	1000					
質 量 (kg)	2. 9					
商品コード	T2401-07804					

7-3 ベビーロッド

固定ピストン式サンプラーのピストンロッドに接続して、 地上でピストンを固定するためのインナロッドです。

長さ(m)	0. 3	0. 5	1. 0	1. 5	2. 0	3. 0
本ロっ い	T2404	T2404	T2404	T2404	T2404	T2404
商品ュート	-16030	-16050	-16100	-16150	-16200	-16300

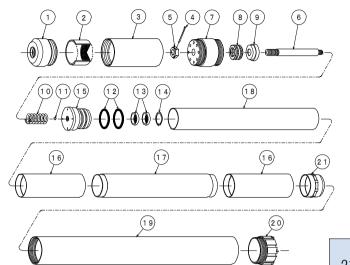
7-4 ボルト付カップリング


ベビーロッドをボーリングロッド内で保持する時に使用します。

名 称	接続ネジ	商品コード
ボルト付カップリング	40. 5	W9103-0293Z

7-5 水圧式サンプラー (WPS-90)

N値が0~8の粘性土、軟質~中程度の地盤に対して試料を採取する時に使用します。



水圧式サンフ	プラー		
型式	WPS-90		
全 長 (mm)	1153		
コ ア 長 (mm)	918		
サンプラー外径(mm)	φ90		
コア採取径 (mm)	φ75		
質 量 (kg)	18. 4		
使用水圧力 (MPa)	1. 0		
商品コード	T2406-09000		
問品 1-1	12406-09000		

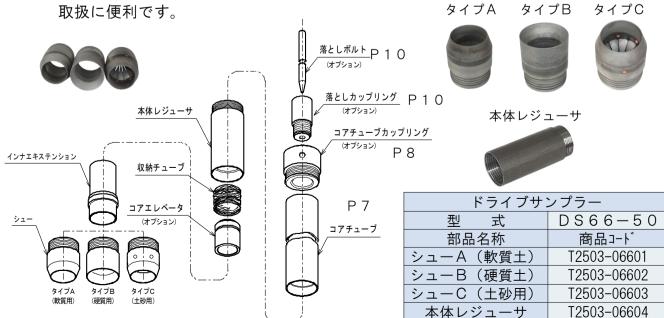
13	レンチ		1	T2406-09007
12	ライナピストン		1	T2406-09006
11	Oリング		2	14901-06300
10	シンウォールライナ		1	T2401-07804
9	アウタチューブ		1	T2406-09005
8	センターロッド		1	T2406-09004
7	ピストン		1	T2406-09003
6	ビス		4	T2406-09002
5	Οリング		2	14901-07000
4	Οリング		2	14901-02209
3	ナット	M22	1	10701-01122
2	Oリング		1	14911-07500
1	ヘッド		1	T2406-09001
ケケー	1 夕 称	借老	佃粉	商品コード

7-6 トリプルチューブサンプラー(TTS-99T)

N値が4以上の粘土またはN値10以上の砂質土を採取する時に使用します。 緩い砂質土や蜜な砂礫にも適用可能です。

※ライナ (VU管) の長さは、 1130mmです。

トリプルチューブサンプラー					
型	式	TTS-99T			
全長 ジューA (mm)		1607. 5			
主文	シューB (mm)	1617. 5			
コア長	シューA (mm)	1120			
コノ女	シュ−B (mm)	1130			
サンプラー	-外径 (mm)	ϕ 99			
採取コア	径 (mm)	φ68			
質	量 (kg)	35. 0			
商品	□ - *	T2408-09900			


T2408-09926

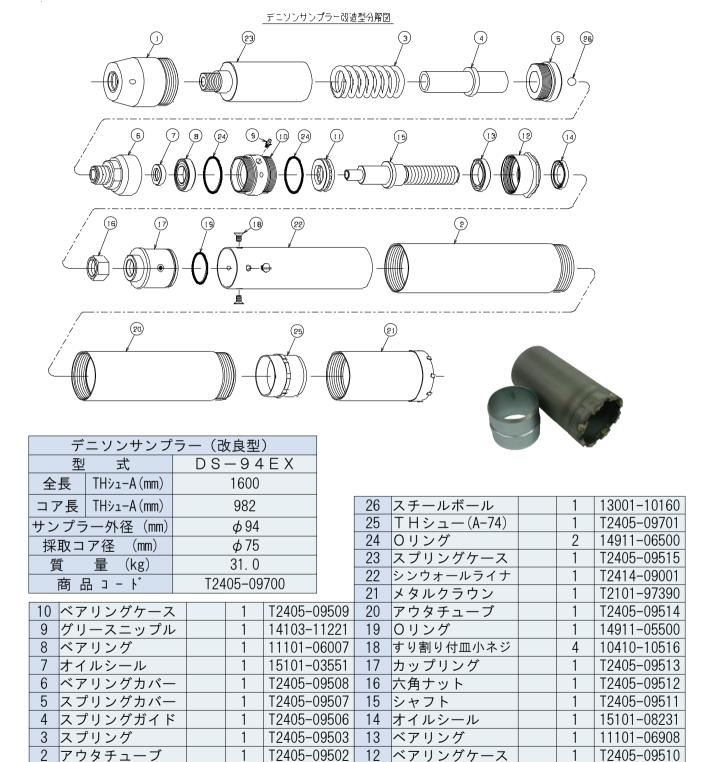
					21	シュー(B-68)			12408-09924
						シュー(A-68)		1	T2408-09922
10	スプリング		1	T2408-09908	20	メタルクラウン		1	T2103-03531
9	スペーサ		1	T2408-09907	19	アウタチューブ(B)		1	T2408-09914
8	複式スラスト		1	11911-52206	18	ライナ		1	T2408-09913
7	カップリング(A)		1	T2408-09906	17	インナチューブ(B)		1	T2408-09912
6	シャフト		1	T2408-09905	16	インナチューブ(A)		2	T2408-09911
5	六角ナット		1	T2408-09904	15	カップリング(B)		1	T2408-09910
4	割りピン		1	10901-08050	14	スナップリング		1	13801-02045
3	アウタチューブ(A)		1	T2408-09903	13	ストレーナ(B)		2	T2408-09909
2	ストレーナ(A)		1	T2408-09902	12	Οリング		2	14901-06000
1	ヘッド		1	T2408-09901	11	スチールボール		1	13001-10120
符号	名 称	備考	個数	商品コード	符号	名 称	備考	個数	商品コード

シュー(0-68)

7-7 ドライブサンプラー

コアチューブの先端に取付け、打込みにより試料を採取します。また、採取された試料は、収納チューブにて覆われているため

1 ヘッド


名

称

符号

7-8 デニソンサンプラー (DS-94EX)

N値が4~15程度の粘性土を採取する時に使用します。 サンプラー先端部にシューを設けることで採取率が向上しました。

※シンウォールライナは標準セット品ではありませんので、別途購入となります。 お手持ちの当社製デニソンサンプラーのメタルクラウンを交換しTHシューと スチールボールを追加することで改良型仕様になります。

11

符号

スラストベアリング

称

名

1

備考 個数

11901-51207

商品コート

T2405-09501

商品コード

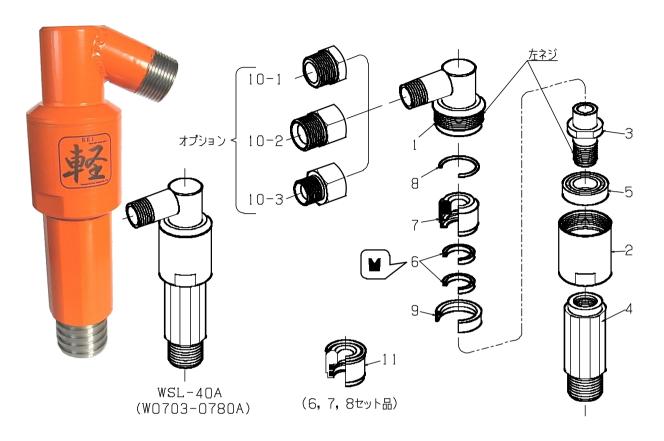

1

個数

備考

8-1 ウォータースイベル (WS-8)

回転しているボーリングロッド内へ連続的にボーリング用 水を送り込むための回転自由装置です。



ウォ	ウォータースイベル					
型	WS-8					
接続ネジ	デリバリ側	PT3/4				
接続イン	ロット゛側	40. 5				
寸法	ϕ 71 × 255 L					
質	3. 4					
商品	コ - 卜 ゛	W0703-0245A				

15	異径六角ニップル	$\sim PT3/4 \times PT1 $	1	22902-11612
14	ベアリング		1	11101-06005
13	ベアリング		1	11100-06005
12	グリースニップル	MT6×1	1	14103-11221
11	Vパッキン		2	15701-02241
10	ラミーパッキン		1	15911-20009
9	オイルシール		1	15181-03851
8	アダプタ		1	W0704-0059A
7	グランド		1	W0704-0058A
6	ロックナット		1	W0704-0057A
5	カップリング		1	W0703-0249Z
4	スピンドル		1	W0703-0248B
3	ベアリングケース		1	W0704-0179Z
2	パッキンケース		1	W0703-0247Z
1	ヘッド		1	W0703-0246A
符号	名 称	備考	個数	商品コード

8-2 ウォータースイベル (WSL-40A)

- ・回転しているボーリングロッド内へ連続的にボーリング用水を送り込むため の回転自由装置です。
- ・超軽量型ウォータースイベルで、キャップシールによりパッキン交換が簡便になりました。

NEWキャップシールを採用! パッキン交換がワンタッチ!! (緩めて、換えて、締めるだけ)

ウォータースイベル					
型	式	WSL-40A			
接続ネジ	P T 3/4				
按柼イン	ロット゛側	40. 5			
寸 注	ϕ 54 × 207 L				
質	1. 7				
商品	W0703-0780A				

キャップシールASS'Y (W0704-0521Z)

	11	キャップシールASSY		1	W0704-0521Z
	10-3	メスコネクター	PT3/4XPF3/4	1	22501-01508
	10-2	メスコネクター	PT3/4XPF1	1	22501-01509
١	10-1	ブッシング	PT3/4XPT1	1	22915-11612
	9	カラー		1	W0704-0488Z
	8	Οリング		1	14911-03500
	7	キャップシール		1	W0704-0520Z
	6	Uパッキン		2	15430-01141
	5	ベアリング		1	11106-06005
	4	カップリング		1	W0703-0249Z
	3	スピンドル		1	W0704-0472Z
	2	ベアリングハウジング		1	W0704-0471Z
	1	ヘッド		1	W0703-0747Z
	符号	名称	備考	個数	商品コード

8-3 ケーシングバンド

商品コード

ケーシングチューブの昇降時にチューブを保持する器具です。

適用サイズ	83	85	89. 1	97	101. 6	114. 3
質量(kg)	11. 2	11. 1	10. 6	12. 3	11. 1	11. 9
商品コード	W0302	W0302	W0301	W0302	W0301	W0301
	-0107Z	-0108Z	-0014A	-0109Z	-0013Z	-0012Z
適用サイズ	127	139. 8	152. 4	165. 2	190. 7	
質量(kg)	17. 5	15. 5	15. 2	21. 3	26. 1	
* D ¬ 1°	W0301	W0302	W0302	W0301	W0301	

-0111Z

-0010Z

-0009Z

☆ ケーシングバンド(駒付)

-0011Z

-0110Z

ケーシングチューブの昇降時にチューブを保持する器具です。 保持する駒とそれを受ける枠とに分かれています。(受注生産)

	枠	\	W0301-0006Z			-0005Z	W0302 -0046Z
商品コート	駒、	W0302 -0099Z	W0302 -0100Z	W0302 -0050A	W0302 -0049A	W0302 -0101Z	W0302 -0102Z
	適用サイズ	114. 3	127	139. 8	152. 4	165. 2	190. 7
(b) HH → 1.	枠		V	/0302-00512	7_		
商品コート	駒	W0302 -0052A	W0302 -0095Z	W0302 -0096Z	W0302 -0097Z	W0302 -0098Z	
	適用サイズ	83	85	89. 1	97	101. 6	

8-4 ロッドバンド

ボーリングロッド昇降時にロッドを保持する器具です。(受注生産)

適用サイズ	40. 5	50
本口っ !"	W0203	W0203
商品コード	-0120Z	-0178Z

8-5 ロッドホルダ, (カムシー)

ボーリングロッド昇降時にロッドを保持する器具で、枠の中に2個の偏芯駒があり、駒に付けられたハンドルの操作により、ロッドを保持します。また従来のホルダーの重さを軽くした軽量型のカムシー(KAMSY)もあります。

ロッドホルダB型						
長 さ (mm)	254					
幅 (mm)	196					
高 さ (mm)	140					
質 量 (kg)	16					
商品コード	W0102-0117Z					
 替え駒						
質 量 (kg)	1. 15					
商品コード	W0103-0144A					

替え駒

☆ カムシー(KAMSY-B)

カムシー(KAMSY)					
長 さ (mm)	265				
幅 (mm)	198				
高 さ (mm)	124				
質 量 (kg)	9. 6				
商品コード	W0103-0635A				
替之	<u></u> え駒				
質 量 (kg)	1. 15				
商品コード	W0103-0144A				
ブロックピース					
質 量 (kg)	0. 3				
商品コード	W0104-0368B				

◇本品は、左操作用

※ハンドルを右操作にした(R)型も ご用意しております。

商品コード;W0103-0638A

8-6 カムアロング(ロッドトング)

浅掘りのボーリングに使用します。手動簡易ロッド降下用器具です。

適用ロッド		40	. 5				
形状	す	l	角				
厚さ(mm)		32					
柄長さ(mm)	650	800	650	800			
質量(kg)	4. 0	4. 5	4. 4	4. 9			
商品コード	W0404 -0071Z	W0404 -0193Z	W0403 -0234Z	W0403 -0242Z			

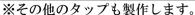
8-7 ロープトング

ロープ等でボーリングロッドの昇降を行う時に使用します。

ロープトング						
幅 (mm)	92					
長 さ (mm)	190					
厚 さ (mm)	32					
質 量 (kg)	2. 4					
備考	5/8シャックル付					
商品コード	W0504-0199Z					

8-8 ロアリングアイアン (アイアントング)

浅掘りのボーリングに使用します。ロッドホルダ兼用の簡 易降下用器具です。


型式	IT-1	IT-2
適用ロッド	40. 5	50
長さ(mm)	240	240
幅(mm)	125	125
高さ(mm)	81	87
柄長さ(mm)	695	695
質量(kg)	11. 0	12. 4
商品コード	W0602-0014Z	W0602-0167Z
替えチャックピース	40. 5用	50用
商品コード	B0503-0145A	B0603-0015Z

9-1 段付インサイドタップ

先端がロッドカップリングタップ、後部がロッドインサイドタップで、2通りの用途に利用できる器具です。

呼称	40. 5	50	
接続ネジ	40. 5	50	
タッフ゜ネシ゛	右	右	
ロット゛ネシ゛	右	右	
質量(kg)	1. 2	2. 0	
商品コート	T2701-02102	T2701-04102	

9-2 ロッドインサイドタップ

孔内残留ボーリングロッドの内側にねじ込み、ボーリングロッドを 回収する器具です。 (水抜き穴付)

呼称	40. 5		
接続ネジ	40. 5		
タッフ゜ネシ゛	右		
ロット゛ネシ゛	 右		
質量(kg)	1. 2		
商品コード	T2701-02101		

※その他のタップも製作します。

9-3 コアチューブタップ

孔内に残留、落下したコアチューブの内側にねじ込み回収する器具です。

呼 称	64	74	84	99	114	
接続ネジ	40. 5					
タップ・ネシ゛ 右						
ロット゛ネシ゛	右					
質量(kg)	3. 2	4	5. 6	8. 9	12. 9	
商品コード	T 2704	T2704	T2704	T2704	T2704	
日日 1-1	-02021	-03021	-04021	-05021	-06021	

9-4 ロッドアウトサイドタップ

ボーリングロッド外径と孔壁の間隔が大きい時、孔内残留ボーリングロッドの外側に被せて回収する器具です。

呼称	40. 5	50
接続ネジ	40. 5	50
タッフ [°] ネシ゛	右	右
ロット゛ネシ゛	右	右
質量(kg)	2. 5	4. 1
商品コード	T2703-02100	T2703-04100

9-5 ホイスティングプラグ (HOP-1.5)

ボーリングロッド・ケーシングチューブなどの昇降に使用する器具です。 継手は、自由に回転するようになっており、下部にはボーリングロッド と接続するためのネジが切ってあります。

型式	H0P-1. 5
耐 荷 重	1.5 ton
接続 ネジ	40. 5
寸 法 (mm)	ϕ 58 \times 225
質 量 (kg)	3. 1
商品コード	W1403-0051Z

10-1 ホース

サクションホース(標準長さ4m)

呼称	25	32	38	50		
サイズ(in)	1	1 1/4	1 1/2	2		
商品コード	22401 -03004	22401 -04004	22401 -05004	22401 -06004		

呼称	19	25	32	38	50
サイズ(in)	3/4	1	1 1/4	1 1/2	2
商品コード	22401 -02011	22401 -03011	22401 -04011	22401 -05011	22401 -06011

10-2 フードバルブ

サクションホースの端面に取付け泥水の逆流防止に使用します。

フードバルブ

呼称	25	32	38	50
サイズ(in)	1	1 1/4	1 1/2	2
☆ 口っし゛	23607	23607	23607	23607
商品コード	-02016	-02020	-02024	-02032

※本製品は、フードバルブノズル付です。

10-3 フクロナット・ノズル(竹の子)

サクション・デリバリホースの端面に取付けて機械との接続に 使用します。

呼称	19 (3/4)		25 (1)			
部品	フクロナット	ノス゛ル	ハ゜ッキン	フクロナット	ノス゛ル	ハ゜ッキン
商品一广	22504 -04016	22504 -04017	22504 -04020	P3304 -0161Z	P3304 -0162Z	22504 -04025
呼 称	38 (1 1/2)		50 (2)			
部品	フクロナット	ノス゛ル	ハ゜ッキン	フクロナット	ノス゛ル	ハ゜ッキン
商品」)	P3304 -0159Z	P3304 -0160Z	22504 -04035	22504 -04006	22504 -04007	22504 -04040

10-4 インターロックバンド

ホースノズルをホースに固定する時使用します。

呼称	19	25	32	38	50
サイズ(in)	3/4	1	1 1/4	1 1/2	2
去ロっし	22601	22601	22601	22601	22601
商品コード	-00002	-00004	-00006	-00007	-00009

10-5 泥水籠

スライムやごみ等をポンプが吸い込むことを防止します。

呼称	荒目	細目	
メッシュ	3mm	2mm	
寸法(mm)	ϕ 250 \times 440 L		
質量(kg)	1. 8	2. 0	
商品コード	39105	39105	
内口口——	-25443	-25444	

11-1 パイプレンチ

ロッド・コアチューブ・ケーシング等、鋼管ネジ脱着工具です。

呼称	450	600	
使用範囲(mm)	26~52	38~65	
商品コード	30401 -62450	30401 -62600	

11-2 チェーントング

ロッド・コアチューブ・ケーシング等、鋼管ネジ脱着工具です。

呼称	ST-1	ST-2	ST-3	ST-4
使用範囲(mm)	14~89	25~170	35~270	60~510
* '`	30403	30403	30403	30403
商品コード	-20090	-20170	-20270	-20510

11-3 フリーアームレンチ・パーマレンチ

ダブルコアチューブ分解・組立用工具です。

○フリーアームレンチ「(株)コアーパック社製」

☆アルミ製

呼 称	66	76	86	116
± □¬ l*	30405	30405	30405	30405
商品コード	-01066	-01076	-01086	-01116

☆鉄製

呼称	66	76	86	116
商品コード	30405	30405	30405	30405
	-01067	-01077	-01087	-01117

○パーマレンチ「(有)アイジイ工業社製」

☆標準型

呼称	66	76	86
± □¬ 1°	30405	30405	30405
商品コード	-02066	-02076	-02086

☆強力型

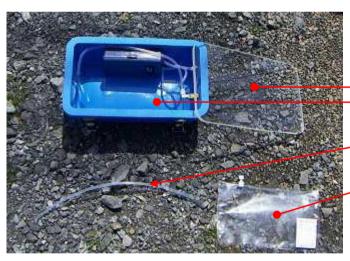
呼 称	66	76	86	116
± □ ¬	30405	30405	30405	30405
商品コード	-02067	-02077	-02087	-02116

12-1 ボーリングバー

土壌ガス調査、地下空気汚染調査などに活用されています。

ボーリングバー											
規格	ϕ 16 × 2145										
商品」十	49201-16150	49201-16215									

※ハードケース付。


12-2 土壌ガス採取器

土壌ガスの採取にご使用ください。

名 称	土壌ガス採取器	捕集バッグ
商品コード	49204-00001	49205-00001

※本製品構成は、本体とフタ及び接続管からなります。

※捕集バッグは、別途ご購入になります。

·土壌ガス採取器 フタ ·土壌ガス採取器 本体

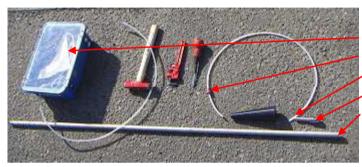
接続管

捕集バッグ

採取孔掘削

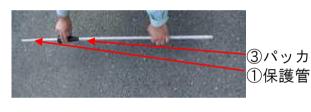
保護管セット ガス採取管挿入 土壌ガス採取器接続

■ 捕集バッグを接続


ポンプ電源を入れフタを閉める。

12-3 土壌ガス採取孔保護管

ボーリングバーなどで掘削した採取孔の孔壁を保護し、土 壌ガス採取器を接続するための保護管です。


土壌ガス採取管										
タイプ	14	16								
備考	ボーリングバー用	ハンマト゛リル用								
商品コード	49209-00001	49209-00002								

※本製品構成は、保護管、心金、パッカからなります。

- ⑤土壌ガス採取器(別売)
- ④ゴム栓付採取管(別売)
- <u>-</u>③パッカ**ヿ**
- ②心金
- 土壌ガス採取管

①保護管-

④ゴム栓付採取管 (別売)

ゴム栓付採取管									
タイプ	14	16							
商品コード	49203-00001	49203-00002							

12-4 土壌汚染調査用ビット(チョッピングビット)

土壌汚染調査用掘削ツール先端ビットです。

呼 称	86											
チップ [°] 外径(mm)	ϕ 87											
チップ [°] 内径(mm)		φ 67.5										
有効長(mm)	65											
仕様	標準	特殊	リテーナ	リテーナ特殊								
チップタイプ	ハウス	コンヒ゛ネーション	ハウス	コンヒ゛ネーション								
商品コード	48525	48525	48525	48525								
	-86110	-86120	-86210	-86220								

※本製品は、アイジイ工業社製本体レジューサに接続可能です。

※チップタイプのコンビネーションとは、ハウス×スパイクです。

チップ:コンビネーション チップ:ハウス (ハウス×スパイク)

技 術 資 料

配管用鋼管標準寸法表(JIS)

	, .	, .			スケジ	ュール	スケジ	ュール	スケジ	ュール	呼 スケジ	び ュール	<u>厚</u> スケジ	ュール		mm) ュール	スケジ	ュール	スケジ	ュール	スケジ	ュール	スケジ	ュール	外
(A)	(B)	(mm)	S, (3, P	1			0		0		0		0		0	10		12			40		60	(m
•	1 /0	10.5	0.0	0.419							17	0.369	0.0	0.450	0.4	0.479									10
6	1/8	10.5	2.0	2.30							1.7	2.03	2.2	2.48	2.4	2.63									ľ
8	1/4	13.8	2.3	0.652							2.2	0.629	2.4	0.675	3.0	0.799									
	., .			3.59								3.46		3.71		4.39									\downarrow
10	3/8	17.3	2.3	0.851							2.3	0.851	2.8	1.00	3.2	1.11									┨.
				4.68								4.68		5.5		6.10								1.07	+
15	1/2	21.7	2.8	1.31							2.8	1.31	3.2	1.46	3.7	1.64							4.7	1.97	-
				7.20								7.20		8.03		9.02								10.8	+
20	3/4	27.2	2.8	1.68 9.24							2.9	1.74 9.57	3.4	2.00	3.9	12.3							5.5	2.94 16.2	-
				2.43										2.89		3.27								4.36	+
25	1	34	3.2	13.4							3.4	2.57	3.9	15.9	4.5	18.0							6.4	24.0	-
				3.38								3.47		4.24		4.57								5.73	+
32	1 1/4	42.7	3.5	18.6							3.6	19.1	4.5	23.3	4.9	25.1							6.4	31.5	+
				3.89								4.10		4.89		5.47								7.27	t
40	1 1/2	48.6	3.5	21.4							3.7	22.6	4.5	26.9	5.1	30.1							7.1	40.0	1
				5.31				4.52				5.44		6.72		7.46								11.1	t
50	2	60.5	3.8	29.2			3.2	24.9			3.9	29.9	4.9	37.0	5.5	41.0							8.7	61.0	1
				7.47				7.97				9.12		10.4		12.0								15.6	+
65	2 1/2	76.3	4.2	41.1			4.5	43.8			5.2	50.2	6.0	57.2	7.0	66.0							9.5	85.8	-
				8.79				9.39				11.3		13.4		15.3								21.4	+
80	3	89.1	4.2	48.3			4.5	51.6			5.5	62.2	6.6	73.7	7.6	84.2							11.1	118	1
				10.1				10.8				13.5		16.3		18.7								27.8	t
90	3 1/2	101.6	4.2	55.6			4.5	59.4			5.7	74.2	7.0	89.6	8.1	103							12.7	153	+
				12.2				13.2				16.0		18.8		22.4				28.2				33.6	t
00	4	114.3	4.5	67.1			4.9	72.6			6.0	88.0	7.1	103	8.6	123			11.1	155			13.5	185	1
				15.0				16.9				21.7		26.3		30.5				39.8				48.6	t
125	5	139.8	4.5	82.5			5.1	93.0			6.6	119	8.1	145	9.5	168			12.7	219			15.9	267	1
				19.8				21.7				27.7		35.8		41.8				53.2				66.0	t
150	6	165.2	5.0	109			5.5	119			7.1	152	9.3	197	11.0	230			14.3	293			18.2	363	┪
				24.2																					t
175	7	190.7	5.3	133																					1
				30.1				33.1		36.1		42.1		52.3		63.8		74.9		88.9		99.4		110	t
200	8	216.3	5.8	166			6.4	182	7.0	199	8.2	232	10.3	288	12.7	351	15.1	412	18.2	489	20.6	547	23.0	605	1
				36.0																					t
225	9	241.8	6.2	198																					1
				42.4				41.2		49.9		59.2		79.8		93.9		112		130		152		168	t
250	10	267.4	6.6	233			6.4	227	7.8	274	9.3	326	12.7	439	15.1	516	18.2	616	21.4	715	25.4	836	28.6	924	1
				53.0				49.3		64.2		78.3		107		129		157		184		204		234	T.
300	12	318.5	6.9	292			6.4	271	8.4	353	10.3	431	14.3	588	17.4	710	21.4	864	25.4	1012	28.6	1122	33.3	1287	┪.
				67.7		55.1		67.7		81.1		94.3		127		158		195		225		254		282	T.
350	14	355.6	7.9	372	6.4	303	7.9	372	9.5	446	11.1	519	15.1	698	19.0	869	23.8	1072	27.8	1238	31.8	1397	35.7	1551	1
400	10	400.4	7.0	77.6	0.4	63.1	7.0	77.6	0.5	93.0	10.7	123	107	160	01.4	203	00.0	246	00.0	286	00.5	333	40.5	365	Ť
400	16	406.4	7.9	427	6.4	347	7.9	427	9.5	512	12.7	676	16.7	880	21.4	1116	26.2	1353	30.9	1573	36.5	1832	40.5	2008	1
450	10	057.0	7.0	87.5	6.4	71.1	7.0	87.5	11.1	122	140	156	10.0	205	00.0	254	00.4	310	240	363	20.7	409	45.0	459	T,
450	18	257.2	7.9	481	6.4	391	7.9	481	11.1	671	14.3	858	19.0	1128	23.8	1397	29.4	1705	34.9	1996	39.7	2250	45.2	2524	- 2
500	20	F00	7.0	97.4	6.4	79.2	0.5	117	10.7	155	15.1	184	00.6	248	06.0	311	32.5	381	20.1	441	44.4	508	F0.0	565	T
500	20	508	7.9	536	0.4	436	9.5	644	12.7	852	15.1	1012	20.6	1364	26.2	1710	32.0	2096	38.1	2426	44.4	2794	50.0	3180	1
:50	22	EE0 0									15.0	213	22.2	294	28.6	374	34.9	451	41.3	527	47.6	600	E40	672	
550	22	558.8									15.9	1172	22.2	1617	20.0	2052	34.9	2480	41.3	2898	47.6	3300	54.0	3696	
600	24	609.6									175	256	246	355	21 0	442	30 n	547	46.0	639	50 4	720	50 5	807	Ī
.00	24	0.800									17.5	1408	24.6	1952	31.0	2431	38.9	3008	40.0	3514	52.4	3960	59.5	4438	
EC.	20	660.4									10.0	299	26.4	413	240	525	41.0	635	40 1	740	E6.6	843	640	944	Ţ
350	26	660.4									18.9	1644	26.4	2272	34.0	2888	41.6	3492	49.1	4070	56.6	4636	64.2	5192]
	(B)	(mm)		, _	Sc	h.	Sc	h.	Sc	h.	Sc	h.	So	h.	Sc	h.	Sc	h.	Sc	h.	Sc	h.	So	h.	J.
۸١		ıımm)l	(3. P					_							_									7
A)	(6)	(11111)			1	0	2	:0	3	0	4	0	6	0	8	0	10	00	12	20	14	40	10	50	1

技 術 資 料

☆単位換算表

重量・	力の換算	算		
N (kN)	\rightarrow	kgf		
1	\rightarrow	0.102		
10	\rightarrow	1.02		
20	\rightarrow	2.04		
50	\rightarrow	5.1		
100	\rightarrow	10.2		
500	\rightarrow	51		
1000 (1)	\rightarrow	102		
2000 (2)	\rightarrow	204		
10000 (10)	\rightarrow	1020		
20000 (20)	\rightarrow	2040		
30000 (30)	\rightarrow	3060		

トルクの換算										
k N · m)	\rightarrow	kgf•m								
	\rightarrow	0.102								
)	\rightarrow	1.02								
)	\rightarrow	2.04								
)	\rightarrow	5.1								
0	\rightarrow	10.2								
0	\rightarrow	51								
(1)	\rightarrow	102								
(2)	\rightarrow	204								
(3)	\rightarrow	306								
(5)	\rightarrow	510								
(8)	\rightarrow	816								
(10)	\rightarrow	1020								
	(N · m) (O O O O O O O O O O O O O O O O O O O	$\begin{array}{c c} kN \cdot m & \to \\ & \to \\ D & \to \\$								

圧力の換算									
MPa	\rightarrow	kgf/cm ²							
1	\rightarrow	10.2							
2	\rightarrow	20.4							
5	\rightarrow	51							
10	\rightarrow	102							
15	\rightarrow	153							
20	\rightarrow	204							
25	\rightarrow	255							
30	\rightarrow	306							

☆ネジ締付トルク表

ネジの呼び	普通ボルト	(4T)	ハイテンションボルト キャップボルト(10.9)							
	(N·m)	{ k g f - c m}	(N	• m)	{kgf	- c m}				
M 5 × 0 . 8	2. 940	3 0	7.938		8 1					
M 6 × 1. 0	4.998	5 1	13.52	6.174	138	6 3				
M 8 × 1 . 2 5	12.25	1 2 5	3 2 . 9 3	15.09	3 3 6	1 5 4				
M 1 0 × 1 . 5	24.40	2 4 9	65.93	29.89	667	3 0 5				
M 1 2 × 1 . 7 5	42.53	4 3 4	1 1 4 . 0	5 2 . 1 4	1163	5 3 2				
M 1 4 × 2 . 0	67.72	6 9 1	181.5	8 3 . 0 1	1852	8 4 7				
M 1 6 × 2 . 0	105.7	1079	283.2	1 2 9 . 6	2890	1322				
M 1 8 × 2 . 5	1 4 5 . 5	1 4 8 5	389.6	1 7 8 . 2	3976	1818				
M 2 0 × 2 . 5	206.3	2105	5 5 2 . 4	252.6	5637	2578				
M 2 4 × 3 . 0	3 5 6 . 7	3 6 4 0	955.2	4 3 6 . 9	9747	4458				

☆ホース金具締付トルク表

+ 74/7	ホースアダプタ				#1005-#1009間	
ホースサイズ 	PTネジ		P F ネジ		(ホース金具)	
	(N·m)	{ k g f - cm}	(N·m)	{ k g f - c m}	(N·m)	{kgf-cm}
1 / 4 "	40.47	413	26.95	275	26.95	275
3 / 8 "	80.85	825	53.90	550	53.90	550
1 / 2 "	97.02	990	64.68	660	64.68	660
3 / 4 "	194.0	1980	129.4	1320	1 2 9 . 4	1320
1 "	2 2 6 . 4	2310	150.9	1540	150.9	1540
1 1/4"	274.9	2805	183.3	1870	183.3	1870
1 1/2"	3 3 9 . 6	3465	2 2 6 . 4	2310	2 2 6 . 4	2310
2 "	6 7 9 . 1	6930	452.8	4620	452.8	4620

※ホース金具の締付トルク許容範囲;-10%~0%

◆FUSO 株式会社 扶桑工業 機械事業部

静岡工場	〒 426-0002	静岡県藤枝市横内800-30	(054)644-2100
東京支店	₹336-0038	埼玉県さいたま市南区関 1-13-5	(048)789-6317
東北支店	₹983-0034	宮城県仙台市宮城野区扇町1-7-1	(022)236-5101
北陸支店	₹933-0331	富山県高岡市中保1204	(0766)31-2620
広島支店	〒 733-0821	広島県広島市西区庚午北4-9-40	(082)271-2858
大阪支店	〒 574-0076	大阪府大東市曙町6-41	(072)874-6654
	2017-06		